Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α

نویسندگان

  • Yuko Ono
  • Kazuho Sakamoto
چکیده

BACKGROUND Circulating lipopolysaccharide (LPS) concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of muscle regeneration is an important determinant of skeletal muscle wasting, it is unclear whether LPS affects this process and, if so, by what mechanism. Here, we used the C2C12 myoblast cell line to investigate the effects of LPS on myogenesis. METHODS C2C12 myoblasts were grown to 80% confluence and induced to differentiate in the absence or presence of LPS (0.1 or 1 μg/mL); TAK-242 (1 μM), a specific inhibitor of Toll-like receptor 4 (TLR4) signaling; and a tumor necrosis factor (TNF)-α neutralizing antibody (5 μg/mL). Expression of a skeletal muscle differentiation marker (myosin heavy chain II), two essential myogenic regulatory factors (myogenin and MyoD), and a muscle negative regulatory factor (myostatin) was analyzed by western blotting. Nuclear factor-κB (NF-κB) DNA-binding activity was measured using an enzyme-linked immunosorbent assay. RESULTS LPS dose-dependently and significantly decreased the formation of multinucleated myotubes and the expression of myosin heavy chain II, myogenin, and MyoD, and increased NF-κB DNA-binding activity and myostatin expression. The inhibitory effect of LPS on myogenic differentiation was reversible, suggesting that it was not caused by nonspecific toxicity. Both TAK-242 and anti-TNF-α reduced the LPS-induced increase in NF-κB DNA-binding activity, downregulation of myogenic regulatory factors, and upregulation of myostatin, thereby partially rescuing the impairment of myogenesis. CONCLUSIONS Our data suggest that LPS inhibits myogenic differentiation via a TLR4-NF-κB-dependent pathway and an autocrine/paracrine TNF-α-induced pathway. These pathways may be involved in the development of muscle wasting caused by sepsis or metabolic endotoxemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-κB.

Muscle wasting is often associated with chronic inflammation. Because tumor necrosis factor α (TNF-α) has been implicated as a major mediator of cachexia, its effects on C2C12 myocytes were examined. TNF-α activated nuclear factor-κB (NF-κB) and interfered with the expression of muscle proteins in differentiating myoblasts. Introduction of a mutant form of inhibitory protein κBα (IκBα) restored...

متن کامل

Dimethyl itaconate protects against lipopolysaccharide-induced endometritis by inhibition of TLR4/NF-κB and activation of Nrf2/HO-1 signaling pathway in mice

Objective(s): Endometritis is the inflammation of the uterine lining that is associated with infertility. It affects milk production and reproductive performance and leads to huge economic losses in dairy cows. Dimethyl itaconate (DI), a promising chemical agent, has recently been proved to have multiple health-promoting effects. However, the effects of DI on endometri...

متن کامل

TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway.

The fusion of mononucleated muscle progenitor cells (myoblasts) into multinucleated muscle fibers is a critical aspect of muscle development and regeneration. We identified the noncanonical nuclear factor κB (NF-κB) pathway as a signaling axis that drives the recruitment of myoblasts into new muscle fibers. Loss of cellular inhibitor of apoptosis 1 (cIAP1) protein led to constitutive activation...

متن کامل

Therapeutic effect of psoralen on muscle atrophy induced by tumor necrosis factor-α

Objective(s): To observe and determine the effect and mechanism of psoralen on tumor necrosis factor-α (TNF-α)-induced muscle atrophy.Materials and Methods: Three sets of C2C12 cells, including blank control, TNF-α (10 or 20 ng/ml) treatment and a TNF-α (10 or 20 ng/ml) plus psoralen (80 μM) administration were investigated. Cell viabili...

متن کامل

MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways

Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017